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SUMMARY 

To investigate the role of the Val residue on stabilizing the y-helix 

which is a proposed model conformation of elastin, conformational energy 

calculations using ECEPP were carried out for Ac-Ala-Pro--Gly-Gly-NHMe 
which is an analogous tetrapeptide for the sequence Val-Pro-Gly-Gly of 
elastin. The lowest-energy conformation is changed by the amino-acid 

substitution from Val to Ala residues, however, overall conformational 

characters in the ensemble of energy-minima of tetrapeptides are funda- 
mentally maintained. The double-bend structure at Pro-Gly-Gly portion 

of Ac-AIa-Pro-GIy-GIy-NHMe is as favorable as that of Ac-VaI-Pro-GIy-GIy- 
NHMe. 

INTRODUCTION 

To analyze the relations between amino-acid sequence and three dimen- 
sional structure of elastin, helical conformations of elstin-mod~l poly- 

peptide with repeated Val-Pro-Gly-Gly sequence were theoretically analyzed 

by Oka et al. [i,2] with the procedures of molecular force field method and 
three-steps method for the optimization of conformational energy. A new 

type helix, y-helix, was found as the most stable helical conformation of 
poly(Val-Pro-Gly-Gly) [2]. y-Helix is composed of the local turn struc- 
ture formed by the 12 consecutive backbone atoms from the carbonyl carbon 

of Val residue to the s-carbon of Val residue in the next Val-Pro-Gly-Gly 
unit and its overall structure is not a spiral structure having a hole 

along helical axis such as ~- and B-helices. y-Helix has two kinds of 
the characteristic stripes along helical axis. One of them is a hydro- 

phobic region composed of non-polar side-chain groups of Val and Pro res- 
idues, and another one is a hydrophilic region composed of polar groups 
such as NH and CO. These characteristic structures of y-helix suggest 
that elastin could interact with imannent water molecules and then forms 
higher-ordered structure which induces the characteristic elasticity of 

elastin. Calculated results indicate that the side-chain group of Val 
residue strongly interacts with that of Pro residue, and these facts were 

also supported by the experimental results[3] that signal enhancements of 

Val y-CH 3 protons of poly(Val-Pro-Gly-Gly) were caused by irradiating Pro 

6-CH 2 protons in D20 at the temperatures of 20~ to 40~ Above results 
suggest the importance of the inter-residue interactions between Val and 
Pro residues for stabilizing the y-helical structure. 

Conformational preference of backbone conformations of the Val resi- 

due is different from that of the Ala residue within intra-residue inter- 
actions as clearly shown in the (~,~) contour maps of Ala and Val residues 
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(See Figure 2 of ref.4 and Figure 3 of ref.5). That is, energetically 

stable regions in the C, D, E and F conformational regions[6] of the Val 
residue are more restricted to small regions than those of Ala residue by 

the effects of the favorable side-chain/backbone interactions. However, 

these C, D, E and F conformations are still stable ones for the Val resi- 
due. So, it is very interesting to investigate the role s of the Val res- 

idue to stabilize they-helix and to analyze the effects of amino-acid 
substitution of Val to Ala residues on the relative stability of y-helix. 
In this work, as the first step of analyzing the role of the Val residue 
on stabilizing the y-helix, theoretical conformational analysis was tried 

for Ac-AIa-Pro-GIy-GIy-NHMe as an analogous tetrapeptide for the sequence 

Val-Pro-Gly-Gly in elastin molecule. 

THEORETICAL 

All conformational energy calculations were carried out with the 
energy function of ECEPP[7]~ During minimizations, all (~,~,X I) of Ala, 

(#,~) of Gly, and ~ of Pro were allowed to vary. All other backbone 

dihedral angles were fixed to 180 ~ except for ~Pr =-75~ and eis peptide 
o . . o . , , bond at Val-Pro(~_. =0 ). All comblnatlons of slngle residue minima were 

�9 A l a  

used as starting conformations. The following conformations were also 

used as additional starting conformations, i.e., (~,~)=(-75~ ~ for 
Ala, (~,~)=(-75~ ~ and (75~ ~ for Gly, and ~=-23 ~ for Pro. 

The normalized Boltzmann factor v is given by Eq(!) of ref.l. The 
�9 l 

statistical average of the conformatlon-dependent quantity for the ensem- 

ble is defined by Eq(3) of ref i. A bend(occuring at i+l and i+2 th 
residues) is defined as a conformation in which R~7A(R is the distance 
between i th C a and i+3 th C a atoms.) and classified into eleven types 

given in Table I of ref 8. A polar hydrogen atom and an oxygen or nitro- 
gen atom with an interatomic distance of less than 2.3A are regarded to be 
hydrogen-bonded[8]. Conformational space is divided into 16 regions with 

the conformational letter codes shown in Figure 1 of ref 6. Vicinal NH- 
3j ~H of Val residue for each conformation ~ere C H coupling constants NH-C 

computed with the following expression of Bystrov et al[9]. 

3JNH_C~ H = 9.4cos2@ - l~icos8 + 0.4 (i) 

where @=#-60 ~ and those of Gly residue were computed with the following 

expression of Bystrov et al[9]. 

3JNH_C~ H = -9.4cos2@ - l,lcos8 + 14.9 (2) 

The conformational energy per whole molecule, AE, is defined by AE=E-E o, 
where E is the value of E at global minimum on the potential energy 
surface~ the particular molecules, bE . is also defined by ~E = 
E-E . , where E is the value ClSof _ ClS cls.mln cis.min E of the lowest-energy 
conforfnatlon of the partlcular molecule with cis peptide bond at X-Pro 

portion. 

RESULTS AND DISCUSSION 

There are 75 low-energy minima for Ac-AIa-Pro-GIy-GIy-NHMe with 
trans Ala-Pro peptide bond having AE<3 kcal/mol, indicating that this 
peptide system is also represented by the ensemble composed of many 
stable conformations as shown in other linear oligopeptides containing 
Pro residues[l,8,10]. Backbone conformations, bend types and eonforma- 



Bend Type 

Table I. Calculated Minimum Energy Conformations a of Trans Ac-Ala-Pro,Gly-Gly-NHMe 

Conformational dE b 
Letter 
Code (kcal mol -I) CAla SAla ~Pro #Gly3 ~Gly3 ~Gly4 ~Gly4 

aAll minima with AE<I.5 kcal mol -I. 

bE =-10.82 kcal mol -I. 
o 

Pro-Gly Gly-Gly 

D C A'C* 0~ -151 80 85 74 52 90 -71 II I' 
D C C*C 0.15 -153 79 76 80 -78 -86 76 V v' 
D C C*A 0.73 -150 80 77 81 -77 -71 -67 V II' 
D F C*C 0.90 -152 80 139 80 -77 -88 73 II V' 
D C D*A 0.95 -152 80 78 153 -50 -80 -37 IV I 
D C C*F 0.98 -152 80 83 86 -70 -83 154 V 
D C C*D 0.99 -151 80 86 87 -68 -155 67 V IV 
D F C*A 1.03 -152 80 158 84 -68 -69 -51 II IV 
D A C D* 1.06 -152 80 -51 -85 68 166 -52 I IV 
D C A'A* 1.08 -152 80 93 78 37 69 46 II III' 
D C A'D* 1.18 -151 80 74 63 49 167 -83 II VII 
D C A'F* 1.26 -153 80 84 78 48 90 -153 II 
D C C*D 1.28 -151 80 81 82 -72 -163 53 V IV 
D C D*C 1.32 -151 80 76 153 -66 -88 72 IV IV 
D C B*E 1.38 -153 79 80 106 -43 -164 170 II 
D F A*G 1.48 -153 80 138 68 46 -179 -57 II VII 
D A A A 1.49 -151 80 -43 -68 -39 -70 -51 III III 

Figure I .  The lowest-energy DCA*C * conformation of Ac-Ala-Pro- 
GIy-GIy-NHMe with trans Ala-Pro peptide bond, 
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tional letter codes of all 17 minima with value of AE<I.5 kcal/mol are 

listed in Table I. The lowest-energy conformation is DCA*C* conformation 

with a hydrogen bond !AIa) CO...HN(GIy3) as shown in Figure i. A similar 

DCA*C* conformation was found as the 14th one with AE=I.14 kcal/mol for 

Ac-Val-Pro-Gly-Gly-NHMe[l]. One the contrary, DCC*A conformation, which 

is the lowest-energy one for Ac-VaI-Pro-GIy-GIy-NHMe, is found as the 3rd 

one with AE=0.73 kcal/mol. The second low-energy conformation is DCC*C 

one(AE=0.15 kcal/mol) with three hydrogen bonds (AIa)CO...HN(GIy3), (Pro) 

CO...HN(GIy4), and (GIy3)CO...HN(NHMe). This conformation was found as 

the 4th one with AE=0.60 kca!/mol for Ac-VaI-Pro-GIy-GIy-NHMe. Two DCC*D 

conformations, which correspond to the conformat• unit of the 7-helix, 

exist as the 7 and 13th ones with AE=0.99 and 1.28 kcal/mol, respectively, 

indicating that DCC*D conformation is destabilized by the amino-acid sub- 

stitution from Val to Ala residues. As shown by the high probability 

occuring D conformation at the Ala residue(V=0o976), D conformation is 

overwhelmingly favorable for the Ala residue of Ac-Ala-Pro-Gly-Gly-NHMe, 
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Table II. Calculated Minimum Energy Conformations of Ci___s_s Ac-Ala-Pro-Gly-Gly-NHMe 

Conformational AE b 
Letter ClS 
Code (kcal mol -I) #Ala ~Ala ~Pro ~Gly3 ~Gly3 ~Gly4 ~Gly4 

Bend Type c 

Pro-Gly Gly-Gly 

F A D D* 0.00 -74 148 -45 -158 
F A D A* 0.30 -66 149 -47 -153 
F F C*C 0.61 -81 148 161 98 
E F C*D 0.63 -157 149 150 74 
F A D G* 0.67 -67 148 -44 -161 
E A C D* 0.85 -160 148 -25 -77 
E F D*A 1.06 -150 147 151 140 
E F D*A 1.23 -149 147 170 117 
F F C*F 1.26 -77 148 161 93 
F A D C* 1.29 -74 148 -41 -165 

60 168 -50 VII VII 
83 87 41 VII II 

-68 -84 75 II V' 
-82 -160 43 II IV 
48 154 60 VII VII 
90 166 -79 I IV 
-71 -87 -65 IV IV 
-70 -78 -68 II III 
-70 -86 -169 II 
67 84 -74 VII 

-i 
aAll minima with AE . <1.5 kcal mol 

cls 
bE . . = - 8 . 5 2  k c a l  m o 1 - 1 .  

C lSwmln  

CAll conformations in this Table take type VI bend at Ala-Pro portion. 

only 8 non-D conformations(A*, E and F) are found in 75 minima. Comparing 

with the results of Ac-Ala-Pro-NHMe(v=0.739) [8], it is clear that D confor- 

mation of Ala residue of Ac-AIa-Pro-GIy-GIy-NHMe is further stabilized by 

the inter-residue interactions between Ala and Gly residues. The most 

favorable conformation of Ala-Pro portion is DC one whose probability(v= 

0.746) is higher than that of Ac-Ala-Pro-NHMe(v=0.508), indicating that DC 

conformation is further stabilized by the inter-residue interactions be- 

tween Ala-Pro and Gly-Gly portions. DCC* and DCA* conformations are 

favorable for Ala-Pro-Gly portion with v=0.306 and 0.301, respectively. 

For the case of Ac-VaI-Pro-GIy-GIy-NHMe, those of DCC* and DCA* are 0.381 

and 0.053, respectivelY. These results mean that the role of the Ala and 

Val residue is impotant for stabilizing the DCC* conformation, however, the 

further precise conformat~onal restriction caused by the Val residue is 

indispensable to the dominant stabilization of DCC* conformation at X-Pro- 

Gly sequence. 

As shown in Table I, all stable conformations in AE<Io5 kcal/mol form 

bend structure at Pro-Gly portion, and most of their bend types are type II 

and type V which is a distorted type II bend. These results correspond to 

the high propensity forming types II and V bend at Pro-Gly portion of Ac- 

VaI-Pro-GIy-GIy-NHMe[I], Ac-Pro-GIy-GIy-NHMe[I], and Ac-Pro-GIy-NHMe[8], 

showing that the tendency forming bend at Pro-Gly portion is essentially 

determined by the intra- and inter-residue interactions in Pro-Gly se- 

quence, and influenced by the inter-residue interactions from Ala and 

another Gly residue in some extents. Table I also presents that 14 of 17 

conformations form bend structure at Gly-Gly portion without specific 

favorable bend types. These results also correspond to those of Ac-Val- 

Pro-GIy-GIy-NHMe[I]. Comparing to the previous results for Ac-Pro-GIy- 

GIy-NHMe[I] and Ac-GIy-GIy-NHMe[II], it is clear that the tendency to form 

bend at Gly-Gly portion is basically governed by the intra- and inter- 

residue interactions in Gly-Gly sequence and influenced by the inter- 

residue interactions from the nearest-neighbor residues(i.e., Pro residue), 

and also that inter-residue interactions from the next-to-nearest-neighbor 

residue(i.e., Ala residue) are not so important. 
There are 45 low-energy minima of Ac-AIa-Pro-GIy-GIy-NHMe with cis 

Ala-Pro peptide bond having AE <3 kcal/mol. All i0 minima with value 
ClS 



Figure 2. 
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The lowest-energy FADD* conformation of Ac-AIa-Pro- 
GIy-GIy-NHMe with cis Ala-Pro peptide bond. 

of AE<I.5 kcal/mol are listed in Table II. The lowest-energy conformation 

is FADD* conformation with v:0.230. This conformation forms triple-bend 

structure with one hydrogen bond (Ac)CO...HN(GIy4) as shown in Figure 2. 
Other 7 conformations in Table II are also triple-bend structure, i.e., 
triple-bend structures are very favorable for cis Ac-AIa-Pro-GIy-GIy-NHMe. 
These conformational Characters are basically caused by the structural 

restriction related to the ci~ peptide bond at Ala-Pro portion. Results 
presented in Tables I and II indicate that stable conformations of eis Ac- 
AIa-Pro-GIy-GIy-NHMe are different from those of trans one and that con- 

formational restriction at Ala-Pro peptide bond causes significant effects 
on the whole conformational preference of this peptide. All 45 low-energy 
conformations of cis Ac-AIa-Pro-GIy-GIy-NHMe take bend structure at Ala-Pro 
portion, however, no low-energy conformations take bend structure at Ala- 

Pro portion among 75 minima of trans Ac-AIa-Pro-GIy-GIy-NHMe. This 

tendency also corresponds to the previous calculated results for X-Pro-Y[10] 

and Val-Pro-Gly-Gly[l]. Table II also shows that conformational prefer- 
ence of cis Ac-X-Pro-GIy-GIy-NHMe tetrapeptides are changed by the amino- 

acid substitution from Val to Ala residues. EF and EA conformations are 
favorable for X=Val, but FA, FF and EF conformations are favorable for X= 

Ala~ Total probability taking triple-bend of cis Ac-AIa-Pro-GIy-GIy-NHMe 
(v=0.783 and 21 conformations in AE<3 kcal/mol) is higher than that of 

0.429 of cis Ac-VaI-Pro-GIy-GIy-NHMe, indicatin~ that bend structure at 

Gly-Gly portion of cis X-Pro-Gly-Gly is more stabilized by the inter- 
residue interactions between Ala and Gly~Gly portion than by those of Val 
and Gly-Gly portion. 

AE , which is the energy difference between the lowest-ener- 
c s-trans 

gies Of %rans and cis conformation, ms 2.30 kcal/mol showing that trans 

conformation of Ac-AIa-Pro-GIy-GIy-NHMe is also more favorable than cis 
conformations as shown for Pro containing oligopeptides[l,8,10] with intra- 
molecular interactions. This value almost corresponds to those of Ac-Ala- 
Pro-NHMe[8] (2.48 kcal/mol) and Ac-Val-Pro-Gly-Gly-NHMe[l] (2~75 kcal/mol). 

These results indicate that relative stability between cis and trans con- 
formation at X-Pro are essentially determined by the interaction at X-Pro 
portion and are scarcely affected by the inter-residue interactions from 
Gly-Gly portion and by the amino-acid substitutions. 

The energy function of ECEPP is composed of terms which describe tor- 
sional potentials and electrostatic, non-bonded, and hydrogen-bonding 
interactions. The parameters characterizing these interactions were 
calibrated by empirical fitting of the crystal structures and rotational 
barriers of a variety of small molecules[7,12,!3]. Conformational energy 
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Table III. Vicinal CouplingConstants JNH_CeH 

of Ac-AIa-Pro-GIy-GIy-NHMe 

3JNH_C~ H 

Ala Gly3 Gly4 

Calculated 8.1 13.5 12.8 % 

Experimental a 8.7 12.6 11.7 

aHCO-Ala-Pro-Gly-Gly-OMe in CDCI_ from ref. 12. 
All experimental values are corrected by the 

relation -JNH_C~H=I.09Jobs in ref. 9. 

calculations using ECEPP have been tried for many peptides and polypep- 
tides, and it is shown that the energy function of ECEPP is reliable for 
the systems composed of peptides[7,10,11,14,15] and polypeptides with 
random-coiled[4,16] and helical conformations[2,14,17,18] supported by the 
good agreement between calculated and experimental results. These points 
are also supported by the following discussion on the calculated and ex- 
perimental values of 3j ~H" 

N~- . 
Calculated results in~• that no absolutely favorable conformations 

are found for Ac-AIa-Pro-GIy-GIy-NHMe within intra-molecular interactions. 
That is, any conformation-dependent properties should not be estimated from 
one conformation, but should be discussed as ensemble-averaged values for 
all stable conformations in the system�9 As shown in Table III, the ensem- 
ble-averaged vicinal NH-C~H coupling constants <3j ~ > of Ala, Gly3, 
and Gly4 residues for calculated energy minima areN~?~,Hl3.5 and 12�9 

Following three points are shown by Figures 5 and 6 of ref. 9. (1) The 
vicinal coupling constant 3j ~ indicates explicite dependence on the 

�9 NH-C 
value of %, and (2)it contazns Ca~• in the range of about 1 to 2 Hz 
for the particular value of ~, (3)The value of ~ also contains ambiguity 
in the range of about i0 to 20 degrees for the particular value of 
3j ~, however, conformation of Ac-AIa-Pro-GIy-GIy-NHMe does not signi- 

NH-CH 
ficans change by the variation of ~ in the range of 20 degrees�9 Above 
feature on the relations between 3j ~ and ~ means that calculated 
<3j ~H > of Ala, Gly3, and Gly4 NH-C H indicate good agreements with 
theNHe~perimental values of them for HCO-Ala-Pro-Gly-Gly-OMe in CDC13(8.7 , 
12,6 and 11.7 for Ala, Gly3 and Gly4) reported by Renugopalakrishnan et al. 
[19]o Above calculated <3JN. CeH > of Gly3 and Gly4 residues are almost 
same as those of Gly3 and Gly~-residues for Ac-VaI-Pro-GIy-GIy-NHMe[I], 
13.1 and 12.0, respectively, demonstrating that overall effects of amino- 
acid substitution from Val to Ala residues on the conformational prefer- 
ence of Gly3 and Gly4 residues is not so significant. This point is also 

the agreement between experimental value of 3JNH C~H of HCO- supported by 
Ala-Pro-Gly-Gly-OMe in CDCI~[19] and that of t-Boc-Val-Pro-GIy-GIy-OMe in 
CDCI_ with 20% C~D.[20]. Calculated value of <3j ~%> of Ala in Ac- 

~m-~ n 1 Ala-~ro-Gly-Gly-~H~e(8.1) is lower than that of Val in Ac-Val-Pro-G y- 
GIy-NHMe(10.1) [!]. This difference is caused by the small difference in 
the value of ~, i.e , the most of favorable value of ~ in the confor- 

�9 . Ala o 
mational ensemble of Ac-Ala-Pro-Gly-Gly-NHMe is almost -150 , but that 
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of trid~ig fOr Ac-VaI-Pro-GIy-GIy-NHMe is almost -130 ~ Theoretical analysis 
on research with 15 ~ interval in (#,~) space of Ac-AIa-Pro-NHMe 
and Ac-VaI-Pro-NHMe[21] showed that the energetically favorable regions of 
them are slightly different, i.e., the regions around (~150~ ~ and 
(-135~176 respectively. These results indicate that conformational 
stabilities of the Ala and Val residues in Ala-Pro and Val-Pro dipeptides 
are fundamentally maintained in those of X-Pro-Gly-Gly tetrapeptides. 
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